Tachpyridine, a metal chelator, induces G2 cell-cycle arrest, activates checkpoint kinases, and sensitizes cells to ionizing radiation.
نویسندگان
چکیده
Iron is critical for cell growth and proliferation. Iron chelators are being explored for a number of clinical applications, including the treatment of neurodegenerative disorders, heart disease, and cancer. To uncover mechanisms of action of tachpyridine, a chelator currently undergoing preclinical evaluation as an anticancer agent, cell-cycle analysis was performed. Tachpyridine arrested cells at G2, a radiosensitive phase of the cell cycle, and enhanced the sensitivity of cancer cells but not nontransformed cells to ionizing radiation. G2 arrest was p53 independent and was accompanied by activation of the checkpoint kinases CHK1 and CHK2. G2 arrest was blocked by UCN-01, a CHK1 inhibitor, but proceeded in CHK2 knock-out cells, indicating a critical role for CHK1 in G2 arrest. Tachpyridine-induced cell-cycle arrest was abrogated in cells treated with caffeine, an inhibitor of the ataxia-telangiectasia mutated/ataxia-telangiectasia-mutated and Rad3-related (ATM/ATR) kinases. Further, G2 arrest proceeded in ATM-deficient cells but was blocked in ATR-deficient cells, implicating ATR as the proximal kinase in tachpyridine-mediated G2 arrest. Collectively, our results suggest that iron chelators may function as antitumor and radioenhancing agents and uncover a previously unexplored activity of iron chelators in activation of ATR and checkpoint kinases.
منابع مشابه
Effect of combined DNA repair inhibition and G2 checkpoint inhibition on cell cycle progression after DNA damage.
In response to DNA damage, cell survival can be enhanced by activation of DNA repair mechanisms and of checkpoints that delay cell cycle progression to allow more time for DNA repair. Inhibiting both responses with drugs might cause cancer cells to undergo cell division in the presence of lethal amounts of unrepaired DNA. However, we show that interfering with DNA repair via inhibition of DNA-d...
متن کاملInhibition of RAC1 GTPase sensitizes pancreatic cancer cells to γ-irradiation
Radiation therapy is a staple treatment for pancreatic cancer. However, owing to the intrinsic radioresistance of pancreatic cancer cells, radiation therapy often fails to increase survival of pancreatic cancer patients. Radiation impedes cancer cells by inducing DNA damage, which can activate cell cycle checkpoints. Normal cells possess both a G1 and G2 checkpoint. However, cancer cells are of...
متن کاملAllyl isothiocyanate induces replication-associated DNA damage response in NSCLC cells and sensitizes to ionizing radiation
Allyl isothiocyanate (AITC), a constituent of many cruciferous vegetables exhibits significant anticancer activities in many cancer models. Our studies provide novel insights into AITC-induced anticancer mechanisms in human A549 and H1299 non-small cell lung cancer (NSCLC) cells. AITC exposure induced replication stress in NSCLC cells as evidenced by γH2AX and FANCD2 foci, ATM/ATR-mediated chec...
متن کاملInhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine.
Caffeine exposure sensitizes tumor cells to ionizing radiation and other genotoxic agents. The radiosensitizing effects of caffeine are associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints. The similarity of these checkpoint defects to those seen in ataxia-telangiectasia (A-T) suggested that caffeine might inhibit one or more components in an A-T mutated (ATM)...
متن کاملIonizing radiation inhibits the PLK cell cycle gene in a G2 checkpoint-dependent manner.
Tumor cell cycle arrest at the cell cycle G2/M boundary after ionizing radiation involves inhibition of the Polo-like kinase 1 (Plk1). We recently found that the mechanism comprised repression of its gene, PLK, mediated by the tumor-suppressor protein BRCA1. In the present study we examined the regulatory responses on PLK and cell cycle phases in breast carcinoma cell lines exposed to various m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 106 9 شماره
صفحات -
تاریخ انتشار 2005